

Harmony: ESA's 10th Earth Explorer Mission

Björn Rommen, Ernesto Imbembo, Daniele Petrolati, Florence Hélière

CEOS SAR Cal/Val Workshop 2024, Space Applications Centre, Ahmedabad, India Session 2, 12 November 2024

ESA UNCLASSIFIED – For ESA Official Use Only

harmony TO RESOLVE STRESS IN THE EARTH SYSTEM

ESA's dynamic surfaces mission

ESA-DEVELOPED EARTH OBSERVATION SAR MISSIONS

Harmony in a nutshell

Harmony is ESA's Earth Explorer 10 mission, comprised of two companion satellites in a loose convoy with Sentinel-1D (along-track separation ~350 km) Its payload suite consists of a passive SAR and a multi-view TIR instrument

Harmony – a multi-domain "Earth System" mission

Upper oceans and oceanatmosphere interactions

Land ice and sea ice

Tectonic strain and volcanic processes

Bringing Harmony to a dynamic world

Harmony will resolve (sub) kilometer scale motion vectors and topography changes associated to dynamic Earth System processes:

- heat, gas and momentum exchanges at the air-sea interface;
- the inner structure of ocean-atmosphere extremes;
- gradual and dynamic volume changes of global mountain and polar glaciers;
- instantaneous sea-ice motions to characterise sea-ice dynamics;
- 3-D deformation vectors associated to tectonic strain;
- topographic change at active volcanoes worldwide.

Mission overview and observables

eesa

Line-of-sight diversity for high resolution

- Slow (DInSAR) and fast (Doppler) surface motion vectors.
- Directional roughness (→wind scatterometry)
- Improved directional surface wave spectra
- Sea Surface (skin) temperature
- Cloud-top motion vectors (TIR time-lapse) and height (TIR parallax)

Mission overview and observables

Single-pass cross-track interferometer

- 3-D surface deformation (as in Stereo)
- Surface elevation time-series
 - **Glaciers**, permafrost, icebergs
 - Volcanoes

Mission Phases Timeline

-

Y1	Y2 Y3 Y4	Y5
XTI Phase	Stereo Phase	XTI Phase
Ice Volume change		Ice Volume change
Glacier dynamics		Glacier dynamics
	3-D Ice surface motion	
	Air-sea interactions	
Ocean topography (experimental)	Atmosphere-ocean-extemes (Tropical Cyclones, Polar lows, etc)	Ocean topography (experimental)
	Upper ocean dynamics	
	Tectonic Strain (3-D deformation)	
Vol. change (volcanoes)		Vol. change (volcanoes)
Iceberg volume	Sea-ice instantaneous motion/deformation	Iceberg volume
		13

*

Harmony in brief

- Data driven ocean-atmosphere couplings and statistical. characterization of vertical fluxes in ESM 2.0.
 - Understanding of air-sea interactions within extremes.
 - Sea-ice dynamics.
 - Global strain maps.
- Understand cycles of topographic change at volcanoes.
- Global and temporally consistent map of ice volume change (loss).
- Improved understanding of glacier dynamics.

SAR architecture and driving requirements

15

Harmony has been designed to be fully compatible with all Sentinel-1 SAR modes and to cover all sub-swaths

Stereo

XTI

Requirement	Value
NESZ	-20 dB
DTAR	-17 dB
Radiometric Accuracy (1 ₀)	0.6 dB
Radiometric Stability (1 ₀)	0.3 dB
Polarimetric Phase Error (3σ)	5 deg
RPE (mid-wind scenario and 2x2 m ² resolution)	0.2 m/s
System contribution XTI phase error variation	1 deg across-swath 3 deg within 500 km along-track

Harmony Antenna Subsystem (SAS)

- 888 mm x 649 mm
- 2 symmetric wings
- 10.5 m baseline ATI baseline
- Total length : 13.164 m
- Design fully compatible with Sentinel-1 First Generation (S-1C/D)

Harmony Antenna Tile

The Antenna Tile is the elemental modular component of the SAS assembly

*

Harmony Calibration Transponder: preliminary findings

- Due to the strongly bistatic geometry of Harmony (d = 350 km), its polarisation basis is aligned neither to the one of the transmitter nor to the ground-referenced H-V polarisation
- > Current technology development activity is based on a retro-directive antenna design
- Backend compatible with either single antenna with electronic steering or 3 separate antennas (each serving a single satellite)
 H-1

Poster tomorrow: "Design of Retro-Directive Calibration Target Antenna for bi(multi) static SAR mission: the Harmony case"

Level-2 validation: goal ocean science requirements

Ocean validation: The Challenge

21

- Spaceborne SAR provides snapshots covering large areas
- Most in-situ instantaneously measure small area/ point measurement
 - time/space scaling mismatch
- Ocean sub-mesoscale (order 1 km) to mesoscale (>30 km) features have lifetimes, O(hours to 10's of days)
- Develop high-resolution SAR ocean product validation approaches Designation of coordinated super-sites?

Potential ocean cal/val sites for Harmony L2 products

Level-2 validation: goal land science requirements

			Land Ice TOC	
	and ice sheet outlets, with a high spatial resolution of at least	C'	< 0.2 m/yr	
	100m, and sub-meter accuracy (OBJ-C11).	\leftrightarrow	< 100 x 100 m ²	
3D deformation			5 year	
	Observe 3D surface motion and deformation of glaciers and ice			
\leftrightarrow < 100 x 100 m ²	streams (OBJ-C22) and support of OBJ-C21			
seasonal		31	D deformation	
	Constrain stain rate to detect variability down to 10 nanostrain	C.	1 mm/year	
per year (1mm/year/100km) (OBJ-G11)	\leftrightarrow	100 x 100 m ²		
			5 year	
Solid Earth TOC	Provide measurements of topographic change at active			
'€″ < 1 m	volcanoes with a spatial resolution of 30 x 30 m2 (OBJ-G21).			
\leftrightarrow < 30 x 30 m ²				

Land validation: main products

TOC: Topography Change Product -> Changes in topographic height over timescales between observations

TDTS: Three-Dimensional Time Series \rightarrow Time-series of three-dimensional deformation vectors

TDV: Three-Dimensional Velocity → Three-Dimensional deformation velocity vector

25

O(50m) scale

C-band = all weather

Directional Doppler

3-D repeat pass InSAR

Dense DSM time-series

Simultaneous,

Directional roughness

Cloud-top Motion

SST

Simultaneous, O(1 km) scale

> Added lines-of-sight of Harmony enable additional products whilst not affecting the main Sentinel-1 mission operations

- Reconfigurability of Harmony satellites \bigcirc
- Enabling non-zero baselines Ο
- > Novel products require updated/new validation strategies
 - Dedicated activity planned for early 2025
 - Need for coordinated supersites \bigcirc

SARCALNET to include SAR higher level product validation?

