CALIBRATION CONCEPT FOR THE UPCOMING ESA ROSE-L MISSION

Jens Reimann, Kersten Schmidt, Patrick T. P. Klenk, Jakob Giez, Marco Schwerdt

ROSE-L is a Programme of the European Union Communication co-funded with COSA.

Outline

3

Pixel Localization Accuracy with Atmosphere 5 m Pixel Localization Accuracy w/o Atmosphere 1.2 m

Radiometric Stability 0.5 dB

Relative Radiometric Accuracy 0.3 dB

Absolute Radiometric Accuracy 1.5 dB

Instrument Polarimetric Gain Imbalance 0.38 dB

Polarimetric Phase Imbalance 5 deg

Coverage

Coverage Illustration for RIWS Mode

RIWS Mode

	Swath 1	Swath 2	Swath 3	Sum
D26 Oberpfaffenhofen	4.71	9.71		2
D38 Berg	9.71		2.72	2
D20 Oshaankawaan	0.71		2 7 2	2

Target Hits (CR+TR)

Orbit time	RIWS	QWS	NWS	RWM1	RWM2	Az Notch
1.23	3+4	2+2	2+2	0+0	0+0	0+1
2.72	2+3	0+0	0+0	0+0	0+1	1+2
4.71	0+1	2+2	2+3	1+1	0+0	1+1
6.23	2+3	3+4	3+4	0+1	0+0	2+0
9.71	3+4	3+4	3+4	0+0	0+0	1+2

D42 Oberrammingen	6.23	1.23		2	
D43 Penzing		1.23		1	
Sums	9	8	8	25	

In-Orbit Calibration Plan

DLR

GEOMETRIC CALIBRATION

Geometric Calibration – Uncertainty Budget

(1) Balss et al. "Measurements on the Absolute 2-D and 3-D Localization Accuracy of TerraSAR-X", MDPI Remote Sensing, 2018

POLARIMETRIC CALIBRATION

Polarimetric Calibration

- Non-linear equation with some non-independent parameters
 - Faraday rotation matrix (Ω) and antenna distortion matrix (δ , f) are correlated
 - → One can construct an antenna distortion matrix that looks similar to a Faraday rotation matrix Mathematically ill-conditioned problem
- Additional constrains required for a unique solution, e.g.
 - X- or C-Band: Ω = 0
 - Calibrated System: antenna distortion matrices are known
 - ROSE-L: δ is known from On-Ground Characterization (OGC)

Faraday Rotation Estimation

Faraday Rotation Estimation (2024)

 $Ratio = \frac{derived FR}{predicted FR}$

		Measu		
Date	Satellite	H/V-Ratio	Derived FR	Prediction
13.01.	SAOCOM	19.65 dB	5.94°	4.19°
14.02.	SAOCOM	19.23 dB	6.24°	7.16°
17.03.	SAOCOM	17.24 dB	7.82°	9.08°
18.04.	SAOCOM	14.01 dB	11.27°	14.58°
19.04.	ALOS-2	18.65 dB	6.66°	8.41°
08.05.	ALOS-2	20.42 dB	5.44°	6.00°
20.05.	SAOCOM	14.99 dB	10.09°	11.54°
25.05.	ALOS-2	15.90 dB	9.11°	11.71°
31.05.	ALOS-2	22.80 dB	4.14°	6.15°

Higher predicted TEC values are expected because GNSS satellites see "more" ionosphere (higher orbit)

13

Faraday Rotation Estimation

		Measurements			
Date	Satellite	H/V-Ratio	Derived FR	Prediction	Ratio
13.01.	SAOCOM	19.65 dB	5.94°	4.19°	141.76%
14.02.	SAOCOM	19.23 dB	6.24°	7.16°	87.1%
17.03.	SAOCOM	17.24 dB	7.82°	9.08°	86.2%
18.04.	SAOCOM	14.01 dB	11.27°	14.58°	77.3%
19.04.	ALOS-2	18.65 dB	6.66°	8.41°	79.2%
08.05.	ALOS-2	20.42 dB	5.44°	6.00°	90.7%
20.05.	SAOCOM	14.99 dB	10.09°	11.54°	87.5%
25.05.	ALOS-2	15.90 dB	9.11°	11.71°	77.8%
31.05.	ALOS-2	22.80 dB	4.14°	6.15°	67.4%

Even a simple ionospheric model and reasonable assumptions allow for a good prediction of Faraday rotation DLR SAR Calibration Center

- DLR SAR Calibration Center has developed on Calibration Concept for ROSE-L
- Best Solutions might not always be obvious
 - Transponder might be better than Corner Reflectors for Geometric Calibration
- We can Test our Calibration Algorithms with real SAR Data even Today
 - Working Reference Targets (Transponder and Corner Reflectors)
 - Test Data from ALOS-2, SAOCOM (and hopefully NiSAR in the future)
- Similar Calibration Performance as Sentinel-1 is expected for ROSE-L
 - Include lessons learned from Sentinel-1

Dr.-Ing. Jens Reimann German Aerospace Center (DLR) Microwave and Radar Institute Oberpfaffenhofen jens.reimann@dlr.de