

NISAR S-SAR Internal Calibration for Payload Health Monitoring ALKA SAINI, Anuja Sharma, J V D Suneela Mishra, Nilima Rani Chaube Alkasaini, anuja, suneela, chaube @sac.isro.gov.in

Introduction:

Calibration is the quantitative characterization of the performance of instrument. Synthetic Aperture Radar (SAR) calibration is essential to establish the true relationship between radar backscatter and geophysical. This process accounts for system biases, imbalances, and processing gains, ensuring measurement accuracy. Two main calibration approaches are: external calibration, which relies on artificial or extended targets, and internal calibration, which continuously monitors the health of payload subsystems and maintains SAR instrument stability throughout in-orbit operations.

Objective of Calibration:

The primary goal of SAR calibration is to monitor and correct variations in gain and phase that may arise due to hardware characteristics and environmental factors. This ensures that the SAR system maintains stable and accurate performance during operations.

Calibration Methods in S-Band SAR (NISAR):

Quality Parameters	Applicable for Cal	Results of Lab Characterization Data
Power & Phase Imbalance	Pre & Post SSPA Cal, LNA Cal, Replica Cal, Sine Cal, Short SSPA, Short LNA, Short Replica Cal	SHORT_SINE_CAL_83.33 - V 0.4 0.4 0.2 0.4 0.2 0.4 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.4 0.2 0.4 0.4 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
I/Q Mean & Standard deviation	Pre & Post and On-board Cal operations	PRE_POST_SSPAH_CAL_ACTIVE_27.78-'H MeanOfMeani_pre MeanOfMeani_pos 1 1 1 1 1 1 1 1 1 1 1 1 1

To address potential in-orbit gain and phase deviations across the 48 TRiMs(H & V Pol corresponding to H1,H2,V1 & V2 Boards), the S-Band SAR (NISAR) implements multiple internal calibration methods and checks the TRiM health status and its gain & phase deviation. Mainly two types of Internal Cal schemes proposed in NISAR S-SAR Band:

> **1.Pre & Post Calibration:** Before & After Imaging operation **2.On-Board Calibration:** Periodically after a cycle

Pre & Post Calibration		signal)	
SSPA Cal	Transmit path characterization Pulses:240 ,20 /TRiM	Range-compressed Cal Power & Phase	Pre & Post LNA Cal, SS
LNA Cal	Receive path characterization Pulses:64	at reak rower	
REPLICA Cal	Antenna bypassed, Transmitted Signal power measurement, for Echo data compression/focussing Pulses:80,20/Chirp Bandwidth Frequency(10 MHz, 25MHz, 37.5MHz, 75MHz)	ISLR & PSLR	Pre & Post LNA Cal, SS
NOISE Cal	Antenna bypassed,System Noise measurement Pulses:64		
SINE Cal	Phase bias estimation between Boards, facilitating digital		

Data Quality Parameters Assessment:

Results & Observations:

- Analysis of calibration data shows that Statistical Parameters, Power and Phase imbalances across the TRiMs are within the expected ranges.
- Additionally, data consistency observed across various test phases confirms stable system behavior and reliable calibration operation.
- ✓ The impulse response parameters(Cal Power, ISLR & PSLR) estimated from replica Cal are following the designed specifications.

Quality parameters are evaluated to ensure performance of TRiM modules consistency and accuracy, including imbalances, dynamic range, ISLR, and PSLR etc. The automated LO-DQE software assesses these parameters, and following the launch, the system is monitored continuously via the IMGEOS platform.

- Noise Cal data showing stable behaviour for all test phases ensuring \checkmark consistency for various MGC gains.
- Data Dynamic Range for all Cal is within the expected range.

Conclusion:

S-SAR internal calibration data is evaluated on a regular basis and compared with ground reference test data till the lifespan of sensor for health monitoring. Any deviations from the expected values are analyzed and provided as feedback to Payload team to restore the performance of the system.

CEOS SAR Cal & Val Workshop 2024, Space Applications Centre, Ahmedabad, India