

SAR Calibration Toolbox: an opensource tool for the quality assessment of SAR data

Andrea Recchia⁽¹⁾, Giorgio Parma⁽¹⁾, Matteo Aletti⁽¹⁾, Riccardo Piantanida⁽¹⁾, **Beatrice Mai⁽¹⁾**, Leonardo De Laurentiis⁽²⁾, Clement Albinet⁽²⁾, Muriel Pinheiro⁽²⁾, Antonio Valentino⁽³⁾

⁽¹⁾ARESYS, ⁽²⁾ESA, ⁽³⁾RHEA Group Contact: andrea.recchia@aresys.it

13th November 2024 CEOS 2024, Ahmedabad 5: Innovative concepts and processing algorithms

Outline

- Earthnet Data Assessment Project
- SAR missions' quality assessment
- SAR Calibration Toolbox
- EOS-04 assessment
- Conclusion

Earthnet Data Assessment Project

- The Earthnet Data Assessment Project (EDAP+) is responsible for assessing the quality and suitability of candidate missions being considered for the Earthnet Third Party Missions (TPM)
- The key objective of ESA's EDAP is to take full advantage of the increased range of available data from non-ESA operated missions and to perform an early data assessment for various missions falling into one of these following instrument domains:
 - VHR and HR Optical Missions
 - > SAR missions
 - Atmospheric Missions
 - > AIS & RF Missions

Earthnet Data Assessment Project

- The Earthnet Data Assessment Project (EDAP+) is responsible for assessing the quality and suitability of candidate missions being considered for the Earthnet Third Party Missions (TPM)
- The key objective of ESA's EDAP is to take full advantage of the increased range of available data from non-ESA operated missions and to perform an early data assessment for various missions falling into one of these following instrument domains:
 - VHR and HR Optical Missions
 - SAR missions
 - > Atmospheric Missions
 - > AIS & RF Missions

Mission Quality Assessment Matrix

- The mission quality assessment is based on specific guidelines and cover the following aspects:
 - Mission documentation review
 - Independent data quality validation
- The results of the assessment are reported in dedicated mission reports that are published on the EDAP website
- The quality assessment follows a set of 'best practice' guidelines (available on EDAP website) aligned to the principles of QA4EO Framework
- The Mission Quality Assessment Matrix provides in a compact form the results of the performed validation activities.

Кеу				
Not Assessed				
Not Assessable				
Basic				
Good				
Excellent				
Ideal				
Not Public				

SAR Missions Quality Assessment

- The mission documentation review is aimed at evaluating the quality of the documentation available to the users
- SAR products availability and accessibility to users is also assessed
- Independent SAR data quality assessment is performed on a set of the third-party SAR mission datasets over calibration sites
- Tools used for SAR data quality assessment:
 - ESA Snap Toolbox (if applicable)
 - Aresys SAR Calibration Toolbox
 - Telespazio KARIOS tool for ARD data assessment

Quality parameter	Metric	Data type	Cal. Sites		
IRF	Spatial resolution	Point Target	Mission dedicated		
	Peak-to-Side Lobe ratio	Point Target	sites Rosamond Corner		
	Integrated Side Lobe ratio	Reflector Array (California)			
Geometry	Localization				
Radiometry	Calibration constant	Point Target	(Australia)		
	Elevation Antenna Pattern	Rain Forest			
	Azimuth scalloping	Rain Forest			
	Beam-to-beam offset	Rain Forest	Rain Forest:		
	Polarimetric imbalance Rain Forest				
	ENL	Rain Forest			
	Noise level	el Low backscatter D			

SAR Calibration Toolbox Overview

- SCT is an open-source tool for quality assessment and calibration of SAR products developed under the framework of EDAP+ and SAR MPC projects
- Source code publicly available on GitHub: <u>https://github.com/aresys-srl/sct</u>
- Developed as a full-fledged Python library with modular design and modular dependencies
- Comes with a Command Line Interface (CLI) Tool to be used from terminal
- Implemented features:
 - Point Target Analysis
 - Radiometric Profiles: Rain Forest and NESZ
 - Interferometric Coherence Analysis

SAR Calibration Toolbox Overview

- High level of customization for each analysis: high- and low-level parameters tuning, additional options and secondary utilities
- Multi-sensor and mission support: Sentinel-1, ICEYE, NovaSAR-1, EOS-04, SAOCOM
- Full documentation of algorithm implementation, functionalities and API interfaces
- Easily extensible for other product formats and missions
- Installation using pip with local cloned repo for each dependency in strict order as reported in README file

Format fully compatible with SCT tools (Sentinel-1 also included)

Format conversion needed before SCT analysis

SCT Architecture Overview

Point Target Analysis

- Full Point Target Data Analysis: batch analysis on input point target locations related to the given SAR product
- IRF analysis: PSLR, ISLR, SSLR (for each direction and 2D)
- RCS analysis: RCS, RCS Error, SCR, Clutter
- Localization analysis: Range ALE, Azimuth ALE, Ground Range ALE
- Several other output computed quantities can be found in the output .csv file
- Fully customizable parameters
- CLI tool available
- Graphical output available

target ROS11CR S1 polarization VV slc b0 IRF Analysis

	Range	Azimuth		
Resolution [m]	0.50866	2.3952		
PSLR [dB]	-13.83915	-16.58905		
ISLR [dB]	-10.64897	-13.70601		

	Localization Error
Slant Range [m]	-1.49105
Ground Range [m]	-5.87841
Azimuth [m]	3.07039

Geocoding Perturbations Features for Point Target Analysis

- To enhance the geocoding accuracy and mitigate localization errors related to external influences for Point Target Analysis, several optional corrections have been implemented:
- Solid Earth Tides Displacement: computing solid tides for a specific ground point at a given time
- Plate Tectonics Displacement: computing the plate tectonic movement using provided drift velocities or an internal model
- Ionospheric Delay: computing signal delay due to ionospheric effects from external TEC maps
- Tropospheric Delay: computing signal delay due to tropospheric effects from external maps
- Sensor specific processing corrections: currently Sentinel-1 only
- Sentinel-1 ETAD Range and Azimuth corrections: if an ETAD product is provided, range and azimuth corrections can be applied

Radiometric Analysis

- Radiometric Analyses: NESZ, Average Elevation Profiles, Scalloping Profiles
- Computed profiles saved in NetCDF output files
- Fully customizable parameters
- CLI tool available
- Graphical output available

Interferometric Coherence Analysis

- Interferometric Analyses: coherence map from two co-registered products or from single interferogram product
- Computing and displaying coherence matrix and histograms both phase and magnitude
- Fully customizable parameters
- CLI tool available
- Graphical output available

Usage example

Every feature can be accessed both using the python library API or via CLI dedicated commands.

Usage as python library:

Usage as CLI tool:

•••

sct -p "path_to_product" -pt "path_to_point_targets_locations_file" -out "path_to_output_directory" --graphs

EOS-04

Parameters	Specifications				
Altitude	524.87 km				
Orbit	Sun synchronous (6 AM - descending / 6 PM equatorial crossing)				
Frequency	5.4 GHz + 37.5 MHz				
Polarization Combination	Single / Dual / Full-pol /Hybrid circular polarimetry (Transmit circular, receive linear)				
Average DC Input Power	3.8 kW				
Pulse width	5 µs to 25 µs				
Antenna Roll Bias (deg)	± 36°				
Range Coverage (km)	107-659 (either side of flight track)				
Look Angle (deg)	11.5-49.6				
Incidence Angle (deg)	12.4-55.5				
Acquisition Modes	Spotlight: 1 m resolution Stripmap: 3 m resolution ScanSAR: 30-50 m resolution				

EOS-04 image over Rosamond target array Medium Resolution ScanSAR Mode (MRS): 33 m resolution, 160 km swath

EOS-04: point target analysis

- Point target parameters from Rosamond and Surat Basin calibration sites aligned with mission requirements/specifications
- Next version of GRD products will include a higher order slant to ground polynomial allowing a better geolocation

	Product	Az. Res [m]	Slant rg. Res [m]	ALE: azimuth [m]	ALE: slant rg. [m]	PSLR range [dB]	PSLR azimuth [dB]	ISLR range [dB]	ISLR azimuth [dB]
ROSAMOND	244692311	31.525	8.164	-37.904	-7.408	-20.536	-12.749	-15.538	-9.897
	244692321	31.147	8.173	7.010	1.955	-20.154	-12.162	-15.474	-8.642
	244692341	31.880	8.209	5.071	9.131	-17.017	-12.286	-11.012	-8.397
SURAT BASIN	244692411	31.119	8.160	-13.957	-10.935	-15.417	-11.418	-9.001	-6.858
	245917611	32.389	8.116	-13.758	0.363	-16.545	-12.137	-9.965	-7.708
	246069011	32.368	8.211	-21.854	-5.323	-16.774	-12.246	-10.554	-7.777

EOS-04: distributed target analysis

- Radiometric profiles from Rain Forest data are quite flat but some small radiometric jumps and residual slopes can be observed both in SLC and GRD data
- Small residual azimuth scalloping is observed
- NESZ level is good and close to S-1 level

l Workshop 2024, Space Applications Centre, Ahmedabad, India

6600

6800

EOS-04 assessment results

- Data quality is good, in line with mission specifications
- A few data issues have been reported in the EDAP TN and will be solved in the next versions of EOS-04 products
- Documentation is fine but a few more details on mission and products format could be useful
- The overall assessment is good, new analyses could be performed on future products' versions

Conclusion

- The SAR missions' quality assessment activities in the framework of the EDAP+ project have been presented
- The open-source SAR Calibration Toolbox was developed in the framework of the EDAP (an SAR MPC) projects to provide to SAR data users a multi-mission general purpose SAR calibration tool
- SCT has been designed to allow for easy integration of new analyses and extension to new SAR missions
- Sample results of SCT tool on EOS-04 data, obtained in the framework of the EDAP+ assessment, have been presented.
- New SCT evolutions (design, functionalities and supported missions) are expected in the future

