Development of DLR's Next Generation C-band Calibration Transponders for future SAR Missions

<u>Sebastian Raab</u>, Anna Maria Büchner, Matthias Jirousek, Jens Reimann, Klaus Weidenhaupt, Marco Schwerdt

Microwaves and Radar Institute, German Aerospace Center (DLR)

DLR SAR Calibration Center - Supported Missions

Mission	Year	Band	Purpose	Cooperation DLR
ERS-1/2	1991-1996	C-Band	External Calibration	ESA / ESTEC
SIR-C / XSAR	1994	L-/C-/X-Band	Overall System Calibration (X-Band)	JPL / NASA
SRTM	2000	C- / X-Band	First DEM by Single Pass Interferometry	JPL / NASA
ASAR / ENVISAT	2002	C-Band	ScanSAR Calibration	ESA / ESTEC
PalSAR / ALOS	2006	L-Band	Polarimetric Calibration, Product Validation	ESA / ESRIN
TerraSAR-X	Since 2007	X-Band	Overall System Calibration	Astrium GmbH
TanDEM-X	Since 2010	X-Band	Overall System Calibration	Astrium GmbH
PAZ	2010-2013	X-Band	Calibration S/W Tools	INTA
Sentinel-1A/B	Since 2007	C-Band	Overall System Calibration (Copernicus)	ESA, TAS-I
Sentinel-1C/D	Since 2017	C-Band	Overall System Calibration (Copernicus)	ESA, TAS-I
RCM Transponder	Since 2015	C-Band	Transponder for Radar Constellation Mission	CSA
NewSpace	Since 2020	X-Band	Corner Reflector Alignments	Capella, Synspective
KOMPSAT-6	Since 2021	X-Band	Calibration Support	KARI
ROSE-L	Since 2021	L-Band	Overall System Calibration (Copernicus)	ESA, TAS-I
SARah	Since 2022	X-Band	Corner Reflector Alignments	BMVgDLR SAR

DLR SAR Calibration Field

DLR's present C-Band Calibration Sites

Sentinel-1 (S-1)

- Three C-band transponders ("Kalibri") and three remote-controlled corner reflectors were commissioned for ESA's Sentinel-1 mission in 2014
- Independent SAR system calibration of Sentinel-1A (2014) and Sentinel-1B (2016) satellites
- Since start of S-1 routine operation performance has been monitored by regular overpasses
- All six reference targets are forseen as central calibration sites for the upcoming Sentinel-1C and -1D satellites

RADARSAT Constellation Mission (RCM)

- In-house development of two transponders from DLR SAR Calibration Center for RCM and RADARSAT-2
- Delivered to CSA and installed in 2017
- Operation/maintenance support by DLR Sebastian Raab • CEOS SAR Cal & Val Workshop 2024 • 2024-11-13

Remote-Controlled Reference Targets

3 Corner Reflectors

- 2.8 m leg length,
- RCS: 49.2 dBm² (C-band)
- \leq 1.0 mm mech. form tolerance
- 0.2 dB abs. rad. accuracy

3 C-Band "Kalibri" Transponders

- 5.405 GHz, 100 MHz BW
- 60 dBm² RCS
- Adjustable polarization
- ≤ 0.1 rad. stability
- 0.2 abs. rad. Accuracy

Status since start of operation (April 2014 – End 2023)

- 1471 overpasses
- 7616 targets aligned
- reliability 94,42 %

Sebastian Raab • CEOS SAR Cal & Val Workshop 2024 • 2024-11-13

"Kalibri" Transponders – Performance

Radiometric stability of ESA's Sentinel-1A satellite measured by "Kalibri" transponders over six years

- Constant mean
- Standard deviation: 0.22 dB (0.19 VV, 0.24 VH)
- This deviation includes all contributions arising from satellite/instrument, the • targets, the different acquisition geometries, and propagation effects
- Stability of transponders is likely much better (< 0.1 dB due to one housing concept and temperature management system)

Motivation for C-Band Transponder Upgrade

- Kalibri transponders have been in uninterrupted operation for 10 years
- Nominal life cycle of several components has been exceeded. Spare parts not longer available
- Maintenance effort increased within the last years
- Minimising risk of longer outages by hardware replacement/upgrade
- Ensuring C-band transponder availability for next decade of future SAR missions
- Transponder hardware and software should evolve to fulfil the increased requirements of follow-on missions, e. g. ESA's Sentinel-1 Next Generation (S1-NG)

Technical Enhancement of upgraded Transponders

- Upgrade to a fully polarimetric dual-channel system:
 - Dual-polarization feeding system for RX and TX antenna
 - Two RF chains in both receive and transmit
 - Dual-channel digital unit
- Adaption of decoupling concept between receiving and transmitting antenna
- Bandwidth increase up to 320 MHz
- New digital unit with increased processing power
- Enhanced active cooling system for improved temperature management.
- Redesign of the transponder housing.
- RCS determination according to the novel "Three Transponder Method" (3TM)

3

Dual Channel Architecture

• Fully polarimetric RX and TX corrugated horn antennas with dual-channel feeding system

• Separate RF chain for H- and V-polarization on receive and transmit

• Individual data processing of each channel by a new dual-channel digital subsystem

Calibration Center

Surpression of Mutual Coupling

Mutual Coupling in Transponders

- DLR's transponder design uses a two antenna concept (receive and re-transmit)
- Due to the high intrinsic amplification (60dB) sufficient decoupling of the antennas is essential

Single-Pol Transponders

Fully polarimetric Transponders

167.864 66.828 26.605 10.592 4.217 1.679 0.668

0.106 Min: 0.106

(x)→

- 90° design (+45°/-45° orientation)
- Decoupling through maximum polarization mismatch
- two channel design
- No decoupling through polarization mismatch possible
- Analysis of alternative decoupling concepts necessary

10

Digital Electronics

- Dual-channel FPGA Transceiver 6.4 GSPS
- Full sampling of received chirps
- Support of the full 320 MHz bandwidth
- Dual-channel operation for polarimetric calibration purposes
- GPS synchronized timestamps
- Adjustable delay of impulse response
- Internal calibration Fine tuning of RCS
- FIR filtering (compensation of frequency response variations)

11

Transponder's RCS Determination via "Three Transponder Method" (3TM)

- Corner reflector as passive target
- Prototype as transponder & radar
- Network analyzer as radar

Uncertainty analysis for X-band 0.066 dB (1σ)

based on ISO "Guide to the Expression of Uncertainty in Measurement" (GUM) Milestone in Absolute Radiometric Calibration of

Reference Targets < 1/10 dB

Roadmap for Uninterrupted Upgrade

- 1. Development of additional C-band transponder with new hardware and software
- 2. Testing and external calibration via 3TM
- 3. Circular exchange:
 - Replacement of one "Kalibri" transponder with new developed device
 - Hardware upgrade, Testing, and external calibration

- All transponders can be upgraded one by one without interrupting the routine operation of all three devices
- Additional transponder available for further developments, experiments, and as test device for maintenance activities

DLR's Active Reference Target Repertoire

<u>This session:</u> *Anna Maria Büchner,* Polarimetric calibration of DLR's dual band transponder and first polarimetric L-band SAR measurements

Prototype

installed

In design

phase

	Kalibri	Kalibri NG - X	Kalibri NG – L(X)	Kalibri Facelift - C
Frequency band	C-Band	X-Band	L-Band	C-Band
Bandwidth	100 MHz	1200 MHz	85 MHz	320 MHz
Polarization	Single adjustable	Single adjustable	Quad pol	Quad pol
RCS	62 dB/m²	57-68 dB/m²	52-62 dB/m²	~65 dB/m²
Abs. radiometric accuracy (1 σ)	0.2 dB	0.07 dB	Expected < 0.1 dB	Expected < 0.1 dB
Radiometric stability (1 σ)	< 0.1 dB	< 0.05 dB	< 0.05 dB	< 0.05 dB

E2E testing

since 2021

In operation since 2014 Sebastian Raab • CEOS SAR Cal & Val Workshop 2024 • 2024-11-13

Conclusion

- DLR SAR Calibration Center provides a facility of several active and passive reference targets for different frequency bands
- The "Kalibri" C-band transponders have been in operation since 2014

 Provide the backbone of SAR system calibration and monitoring for Sentinel-1 mission
 Two similar transponders were delivered to CSA for RCM and have been in operation since 2017
 Transponder operation also foreseen for Sentinel-1C and -1D
- Increased requirements of future SAR mission demand C-band transponder upgrade with new hardware

 Fully polarimetric dual-channel system
 - Increased processing power for dual-channel operation
- Accuracy of transponder RCS is expected ≤ 0.1 dB determination via "Three Transponder Method"
- Facelift of "Kalibri" transponders can be executed without interrupting the transponders' routine operation

