NISAR S-SAR DBF Calibration

Samneet Thakur* , Krishna Murari Agrawal* , Raghav Mehra* , V M Ramanujum* , J VD Suneela ** * SIPA/MDPG/SDPD ** MRSA/MSIG/MSSD SAC Ahmedabad, Gujarat Dated 13/11/2024

Contents

- About NISAR
- NISAR Digital Beam Forming
- Mathematical Background of Digital Beam Forming
- S-SAR Antenna Patterns for DBF & RDM Mode
- Digital Beam Forming Calibration During Commissioning Phase
- Effects of Pointing Error on Radiometric Profiles
- Effects of Beam Forming Coefficients on Raw & Processed Data
- Conclusion
- References

Salient Features of NISAR

S-SAR SweepSAR Acquisition Strategy

Image Curtesy: S-SAR Payload

Digital Beam Forming

- The SweepSAR mechanism used in NISAR works on the principle of selecting only certain adjacent subapertures (at a given time) to be used as Rx channels.
- The phase difference is introduced by the presence of the secondary reflector antenna.
- The data from these channels are phase-equalized by multiplying with complex weighing coefficients and then added.

 $u_{k}(\theta)$ denotes the received signal for the k^{th} TRiM at angle θ , $g_k(\theta)$ denotes the antenna gain for the k^th TRiM at angle θ , $x(\theta)$ denotes the received signal from swath at the antenna, and $n(\theta)$ denotes noise.

 $v(t)$ is the windowed Rx signal using windowing function $w_k(t)$, and $y(t)$ DBFed output

 $\theta(t)$ is a function which converts return time t to the corresponding antenna angle θ .

 $q_k(t)$ denotes the weighing coefficients used for phase equalization.

$$
u_k(\theta) = g_k(\theta).x(\theta) + n(\theta)
$$

$$
q_k(t) = \frac{\overline{g_k(\theta(t))}}{|g_k(\theta(t))|}
$$

$$
v(t) = \sum_{k=1}^{24} u_k(\theta(t)). w_k(t)
$$

$$
y(t) = \sum_{k=1}^{24} u_k \{ \theta(t) \} . w_k(t) . q_k(t)
$$

$$
\mathbb{A}^{\mathbb{A}}
$$

S-SAR Antenna Pattern for On –Board DBF & By Pass Mode

- Nominal mode of data acquisition
- Data windows of channels are computed considering swath overlaps of **three adjacent TRiMs.**
- DBF process **improves SNR** and provides **uniform radiometry across swath**.

S-SAR Antenna Pattern for RDM Mode

Digital Beam Forming Calibration During Commissioning Phase

SAG CESS Simulation of Pointing Error on DBF Mode Radiometric Profile

Steps

- 1. Generating received power profile across swath without any pointing errors
- 2. Generating received power profile across swath at **different roll errors**
- 3. Difference between these profiles will give measure of residual radiometric profile

Residual Radiometric Errors Due to Roll Error in DBF Mode

CEOS SAR Cal & Val Workshop 2024, Space Applications Centre, Ahmeda⁴⁰

SAR Echo Data Simulation Strategy for Raw Data mode with DBF Data Windows

SAG CESS

On Ground Digital Beam Forming

Steps

- 1. Mapping off fast time (τ) to elevation angle (El) using SAR Geolocation algorithm denoted by $El(\tau)$
- 2. Calculation of Interpolated Beam Forming Coefficient for each fast time *ꚍ* using Receive Antenna Pattern *G_r (τ)*
- 3. Beam Forming $y(\tau) = \sum_{k=1}^{24} c_k \{ El(\tau) \}^* d_k(\tau)^* w_k(\tau)$

where,

 $c_k(El(\tau))$ is the interpolated beam forming coefficient *for kth TRIM at fast time ꚍ , conjugate of complex antenna pattern with unity magnitude*

 $d_k(\tau)$ *is the windowing function for selection of TRIMs for given echo time*

 $W_k(\tau)$ *is the windowing function for selection of TRIMs for given echo time*

Raw Data Intensity Profiles after Digital Beam Forming

Trim Wise Raw Data was combined using two methods

- **3-Tap Digital Beam Forming (i.e. Receive Antenna Pattern Phase Compensation)**
- **3-Tap Coherent Addition (i.e. NO Receive Antenna Pattern Phase Compensation)**
- **Improvement of 1-5 dB in Intensity Profile for 3-Tap DBF case**
- **Relatively Uniform Radiometry across swath in DBF Case**

AVERAGE INTENISTY RANGE PROFILE

CEOS SAR Cal & Val Workshop 2024, Space Applications Centre, Ahmedabad, India

pulses

Dead Range Gaps at Fix Range Bins for all azimuth

Conclusion

- Digital Beam Forming generates wide swath images at uniform radiometry
- Digital Beam Forming Calibration is done using following methods in Commissioning Phase
	- 1. Accurate **Time to Angle** Mapping

Joint Pointing Calibration Exercise

- 2. Accurate **Angle to Coefficient** Mapping
	- Nominal DBF Mode & RDM Mode with DBF Data Windows Acquisition over Uniform Backscatter Regions over successive cycle
	- On Ground Beam Forming Coefficient is used to validated On Board beam Forming

References

[1] K M Agrawal et. al. , "NISAR ISRO Science Data Processing and Products", SPIE Asia Pacific Remote Sensing, April 2016, https://doi.org/10.1117/12.2228074

[2] P. Rosen et. al., "The NASA-ISRO SAR (NISAR) mission dual-band radar instrument preliminary design," 2017 (IGARSS), USA, 2017, pp. 3832-3835, doi: 10.1109/IGARSS.2017.8127836

[3] A. Freeman et. al., "SweepSAR: Beam-forming on receive using a reflector phased array feed combination for spaceborne SAR," in Proc. IEEE Radar Conf., May 2009, pp. 1–9

[4] H. Ghaemi et. al., "Onboard digital beamforming: Algorithm and results," 2014 IEEE GRSS, Canada, 2014, pp. 3838-3841, doi: 10.1109/IGARSS.2014.6947321

[5] Kumar, R. et. al., "NISAR S-SAR Digital Beamforming Architecture and Implementation". INCOSE International Symposium, 33: 39-47. <https://doi.org/10.1002/iis2.13113>

Thanks

backup

NISAR Acquisition Geometry

Major Mission and Acquisition Parameters

Salient Features of NISAR

- World's First Dual (L&S) Frequency **SweepSAR** Mission
- High Resolution (6m azimuth) Wide Swath (240 Km) Mission
- Wide Swath is achieved using **Large Receive Data Window**
- High Resolution achieved using 12 m secondary reflector antenna
- Uniform Radiometry across Swath using **Digital Beam Forming**
- Large Receive Data Window, small PRI causes **Dead Range Gaps**
- Distribution of dead range gaps using **PRF Dithering/ Staggered PRI**
- **Resample** the Non Uniformly Sample Azimuth Data to Use RDA

