

Samneet Thakur^{*}, Krishna Murari Agrawal^{*}, Raghav Mehra^{*}, V M Ramanujum^{*}, J VD Suneela^{**} ^{*} SIPA/MDPG/SDPD ^{**} MRSA/MSIG/MSSD SAC Ahmedabad, Gujarat Dated 13/11/2024

Contents

- About NISAR
- NISAR Digital Beam Forming
- Mathematical Background of Digital Beam Forming
- S-SAR Antenna Patterns for DBF & RDM Mode
- Digital Beam Forming Calibration During Commissioning Phase
- Effects of Pointing Error on Radiometric Profiles
- Effects of Beam Forming Coefficients on Raw & Processed Data
- Conclusion
- References

Salient Features of NISAR

S-SAR SweepSAR Acquisition Strategy

Image Curtesy: S-SAR Payload

Digital Beam Forming

NISAR DPGS ATBD REVIEW

- The SweepSAR mechanism used in NISAR works on the principle of selecting only certain adjacent subapertures (at a given time) to be used as Rx channels.
- The phase difference is introduced by the presence of the secondary reflector antenna.
- The data from these channels are phase-equalized by multiplying with complex weighing coefficients and then added.

 $u_k(heta)$ denotes the received signal for the $k^{ ext{th}}$ TRiM at angle heta, $g_k(heta)$ denotes the antenna gain for the $k^{ ext{th}}$ TRiM at angle heta, x(heta) denotes the received signal from swath at the antenna, and n(heta) denotes noise.

v(t) is the windowed Rx signal using windowing function $w_k(t)$, and y(t) DBFed output

heta(t) is a function which converts return time t to the corresponding antenna angle heta.

 $q_k(t)$ denotes the weighing coefficients used for phase equalization.

$$u_k(\theta) = g_k(\theta) \cdot x(\theta) + n(\theta)$$

$$y(t) = \sum_{k=1}^{24} u_k \{\theta(t)\}. w_k(t). q_k(t)$$

S-SAR Antenna Pattern for On –Board DBF & By Pass Mode

- Nominal mode of data acquisition
- Data windows of channels are computed considering swath overlaps of three adjacent TRiMs.
- DBF process improves SNR and provides uniform radiometry across swath.

S-SAR Antenna Pattern for RDM Mode

Digital Beam Forming Calibration During Commissioning Phase

Factor/Issue	Action/Remarks During Commissioning Phase
Accurate Pointing (Time to Angle Mapping)	Joint Pointing Calibration Exercise with JPL aims to estimate error in roll, pitch & yaw Using Null & Doppler Estimates for different TRIMs
On-Board LUT for Beam Forming Coefficient (Angle to Coefficient Mapping)	 Validation using RCID-50 (On –Board DBF) & 51 (On –Ground DBF) over Uniform Backscatter Region in successive cycles. On Ground Beam Forming Coefficient generated using RCID-51 is used to validate RCID-50 On-Board Beam Forming Coefficient. Beam Forming Coefficients are then updated & uploaded On-Board.
Tx & Rx Antenna Pattern Validation	 Using RCID -51 over Uniform Backscatter Region

Steps

- Generating received power profile across swath without any pointing errors
- Generating received power profile across swath at different roll errors
- 3. Difference between these profiles will give measure of residual radiometric profile

Radar Equation $P_r = \frac{\lambda^3 P_t G_t(\theta_{el}, \theta_{az}) G_r(\theta_{el}, \theta_{az})}{(4\pi R)^3 L_f L_s} \frac{\sigma^0}{\sin \eta} \frac{c\tau}{2L_a}$					
Where					
c	Light Velocity	299792458 m/s	$G_t(\theta_{el}, \theta_{az})$	Transmitted gain	Nomi nal
σ ⁰	Backscattering coefficient	Unity	$G_r(\theta_{el}, \theta_{az})$	Received gain	Nomi nal
P _t	Transmitted power	Nominal	λ	Wavelength	.09 m
<i>P</i> _r	Received Power	Evaluated	τ	Pulse width	25 us
θ_{el}	elevation angle	29.5°-41.5°	L _s	System Losses	1
θ_{az}	azimuth angle	0.35	L _f	Fluctuation Losses	1
R	Slant range	890 km -1060 km	η	Incidence Angle	Nomi nal°
L _a	Azimuth Antenna Length	12			

Residual Radiometric Errors Due to Roll Error in DBF Mode

Pointing	Pk-Pk Error
Error	(In dB)
(Degrees)	
0.05	1.25 dB
0.1	2.25 dB
0.15	3.5 dB
0.2	4.0 dB

SAR Echo Data Simulation Strategy for Raw Data mode with DBF Data Windows

On Ground Digital Beam Forming

Steps

- 1. Mapping off fast time (τ) to elevation angle (El) using SAR Geolocation algorithm denoted by $El(\tau)$
- 2. Calculation of Interpolated Beam Forming Coefficient for each fast time (τ) using Receive Antenna Pattern $G_r(\tau)$
- 3. Beam Forming $y(\tau) = \sum_{k=1}^{24} c_k \{El(\tau)\}^* d_k(\tau)^* w_k(\tau)$

where,

 $c_k(El(\tau))$ is the interpolated beam forming coefficient for kth TRIM at fast time (τ) , conjugate of complex antenna pattern with unity magnitude

 $d_k(\tau)$ is the windowing function for selection of TRIMs for given echo time

 $w_k(\tau)$ is the windowing function for selection of TRIMs for given echo time

Raw Data Intensity Profiles after Digital Beam Forming

Trim Wise Raw Data was combined using two methods

- 3-Tap Digital Beam Forming (i.e. Receive Antenna Pattern Phase Compensation)
- 3-Tap Coherent Addition (i.e. NO Receive Antenna Pattern Phase Compensation)
- Improvement of 1-5 dB in Intensity Profile for 3-Tap DBF case
- Relatively Uniform Radiometry across swath in DBF Case

AVERAGE INTENISTY RANGE PROFILE

CEOS SAR Cal & Val Workshop 2024, Space Applications Centre, Ahmedabad, India

pulses

Dead Range Gaps at Fix Range Bins for all azimuth

Conclusion

- Digital Beam Forming generates wide swath images at uniform radiometry
- Digital Beam Forming Calibration is done using following methods in Commissioning Phase
 - 1. Accurate Time to Angle Mapping

Joint Pointing Calibration Exercise

- 2. Accurate Angle to Coefficient Mapping
 - Nominal DBF Mode & RDM Mode with DBF Data Windows Acquisition over Uniform Backscatter Regions over successive cycle
 - On Ground Beam Forming Coefficient is used to validated On Board beam Forming

References

[1] K M Agrawal et. al., "NISAR ISRO Science Data Processing and Products", SPIE Asia Pacific Remote Sensing, April 2016, https://doi.org/10.1117/12.2228074

[2] P. Rosen et. al., "The NASA-ISRO SAR (NISAR) mission dual-band radar instrument preliminary design," 2017 (IGARSS), USA, 2017, pp. 3832-3835, doi: 10.1109/IGARSS.2017.8127836

[3] A. Freeman et. al., "SweepSAR: Beam-forming on receive using a reflector phased array feed combination for spaceborne SAR," in Proc. IEEE Radar Conf., May 2009, pp. 1–9

[4] H. Ghaemi et. al., "Onboard digital beamforming: Algorithm and results," 2014 IEEE GRSS, Canada, 2014, pp. 3838-3841, doi: 10.1109/IGARSS.2014.6947321

[5] Kumar, R. et. al., "NISAR S-SAR Digital Beamforming Architecture and Implementation". INCOSE International Symposium, 33: 39-47. <u>https://doi.org/10.1002/iis2.13113</u>

Thanks

backup

NISAR Acquisition Geometry

23-11-2024

Major Mission and Acquisition Parameters

Parameters	S-band	L-band			
Orbit	747 km with 98° inclination				
Repeat Cycle	12 days				
Time of Nodal	6 AM / 6 PM &				
Crossing & Look	Left Look				
Direction					
Frequency	3.2 GHz ± 37.5 MHz	1.2575 GHz ± 40 MHz			
Available	Single Pol (SP): HH or VV	SP: HH or VV			
Polarimetric Modes	Dual Pol (DP): HH/HV or VV/VH	DP: HH/HV or VV/VH			
	Compact Pol (CP): RH/RV	CP: RH/RV			
	Quasi-Quad Pol (QQP): HH/HV and	Quad Pol (QP): HH/HV/VH/VV			
	VH/VV				
Available Range	10 MHz, 25 MHz, 37.5 MHz, 75 MHz	5 MHz, 20 MHz, 40 MHz, 80 MHz			
Bandwidths		(Additional 5 MHz Auxiliary Band for 20 &			
		40 MHz modes at other end of pass-band)			
Swath Width	> 240 Km (except for QQP Mode)	> 240 Km (except for 80MHz BW)			
Spatial Resolution	7m (Az.); 3m-24m (Slant-Ra)	7m (Az.); 3m-48m (Slant-Ra)			
Incidence Angle	33° – 47°	33° – 47°			
Range					
Noise Equivalent s°	-25 dB (baseline)	-25 dB (for required full-swath modes)			
	-20 dB(Threshold)				
Ambiguities	< -20dB for all modes except QQP	< -23dB swath average in SP or DP modes			
		< - 17dB swath average in QP mode			
Pointing control	< 273 arc seconds				
Orbit control	< 350 meters				
Data and Product	Free & Open				
Access					

Salient Features of NISAR

- World's First Dual (L&S) Frequency SweepSAR Mission
- High Resolution (6m azimuth) Wide Swath (240 Km) Mission
- Wide Swath is achieved using Large Receive Data Window
- High Resolution achieved using 12 m secondary reflector antenna
- Uniform Radiometry across Swath using **Digital Beam Forming**
- Large Receive Data Window, small PRI causes **Dead Range Gaps**
- Distribution of dead range gaps using **PRF Dithering/ Staggered PRI**
- **Resample** the Non Uniformly Sample Azimuth Data to Use RDA

