

Unambiguous Estimation of Deformation in GBSAR through Successive Referencing

Ameya Anil Kesarkar, Akshay Vetal Pandit, Yogendra Sahu, Ashokkumar Rohada, Prantik Chakraborty, Pankaj Kanti Nath, Ch.V. Narasimha Rao

Space Applications Centre (SAC), ISRO, Ahmedabad

13th November, 2024

CEOS SAR Cal & Val Workshop

✓ GBSAR: Concept & Applications

- ✓ Proof of concept set-up using SDR in the lab environment.
- ✓ Data processing to extract deformation
 - ✓ Unambiguous Estimation
 - ✓ Successive referencing

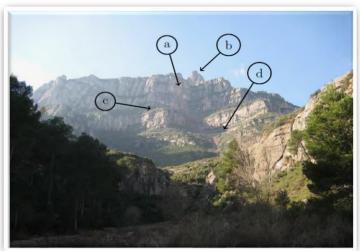
Microwave ground based synthetic aperture radar (GBSAR):

- ✓ A unique remote sensing concept
- \checkmark Suitable for all-weather, all-time monitoring
- \checkmark Detects subtle structural deformations with high resolutions
- \checkmark This forms an early-warning system with very high accuracy and reliability.
- \checkmark Once deployed in the field, it has potential to persistently monitor wide area from the remote location

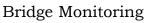
GBSAR: Applications

Constant Monitoring of:

- Land Slides
- Volcanoes
- Glacier ices
- Man-made structures:
 - Dams
 - Bridges
 - Mining Areas
 - High rise buildings
 - Power lines
 - Transmissions towers

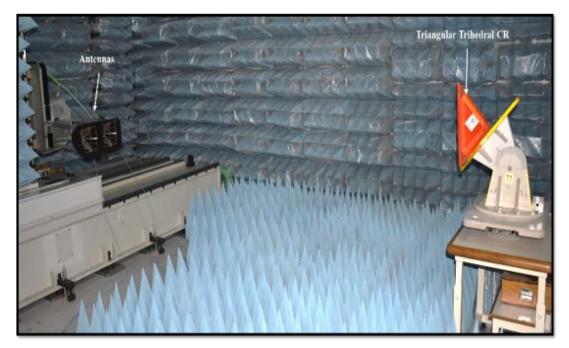

End Use Hazard Preventive Assistance

Alarm



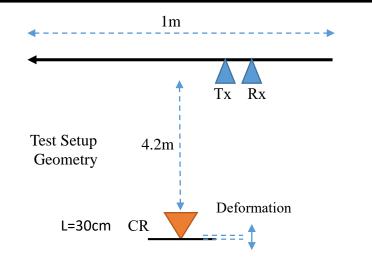
Structure Monitoring

Landslide Monitoring

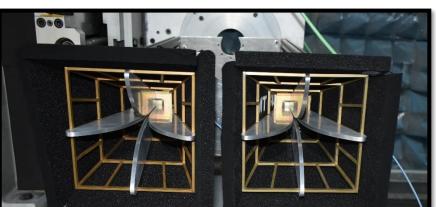


Dam Monitoring

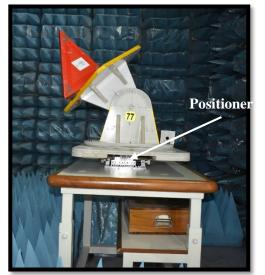
- ✓ Typically, POC Set-up consists of:
 - ✓ Universal Software Radio Peripheral (USRP) (SDR)
 - ✓ Horn Antennas (Transmit (Tx) and Receive (Rx))
 - ✓ Triangular trihedral corner reflector (CR) mounted
 - on micro positioner (meant for inducing deformations)
- \checkmark Tx/Rx antennas are mounted on a scanning structure.



- ✓ Pulsed Chirp signal is transmitted and reflected signal from CR is received though Rx horn antenna.
- \checkmark The data acquired over the aperture length is processed to form the phase-map of SAR image.

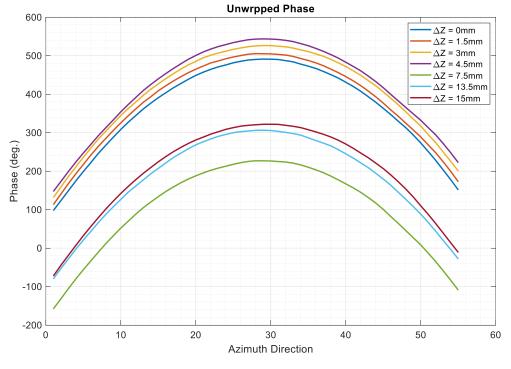


GBSAR: Proof of concept set-up using SDR in the lab environment



Parameters	Value
Velocity	450 mm/min
PRI	2.4 sec
Pulse Width	10 us
Centre frequency	5.4GHz
Bandwidth	160MHz
Synthetic Aperture Length	1 m
Slant Range Resolution	1 m
Cross Range Resolution	28mrad (28m @ 1km)

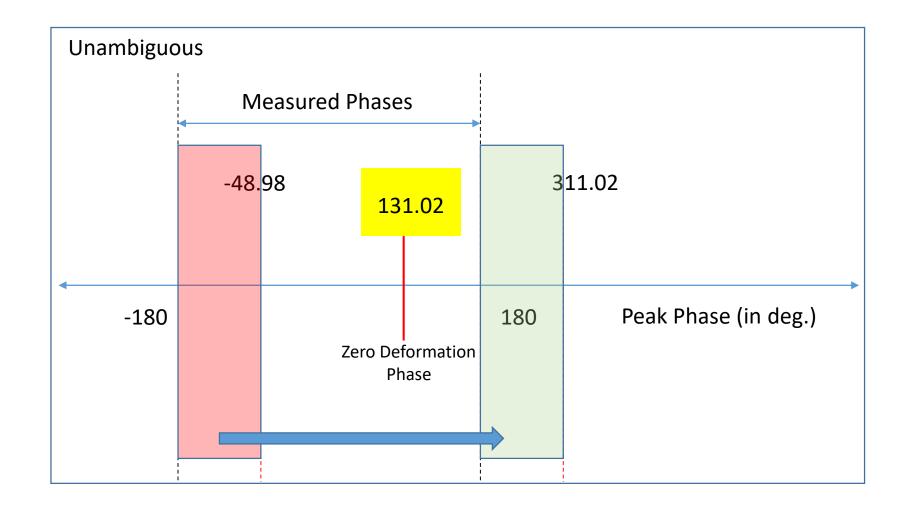
Pair of Transmit and Receive Horn Antennas


Line-of-sight deformation is simulated using a positioner (step size: 1.5mm).

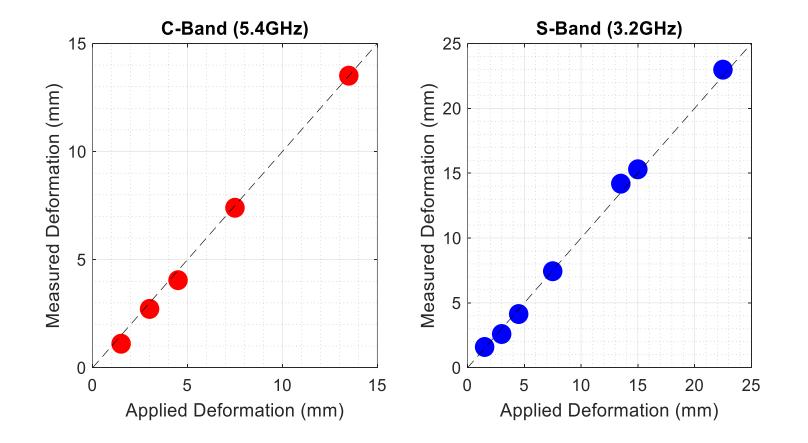
✓ For each position, we get phase information corresponding to delay (i.e. path length).

C-band : 5.4GHz

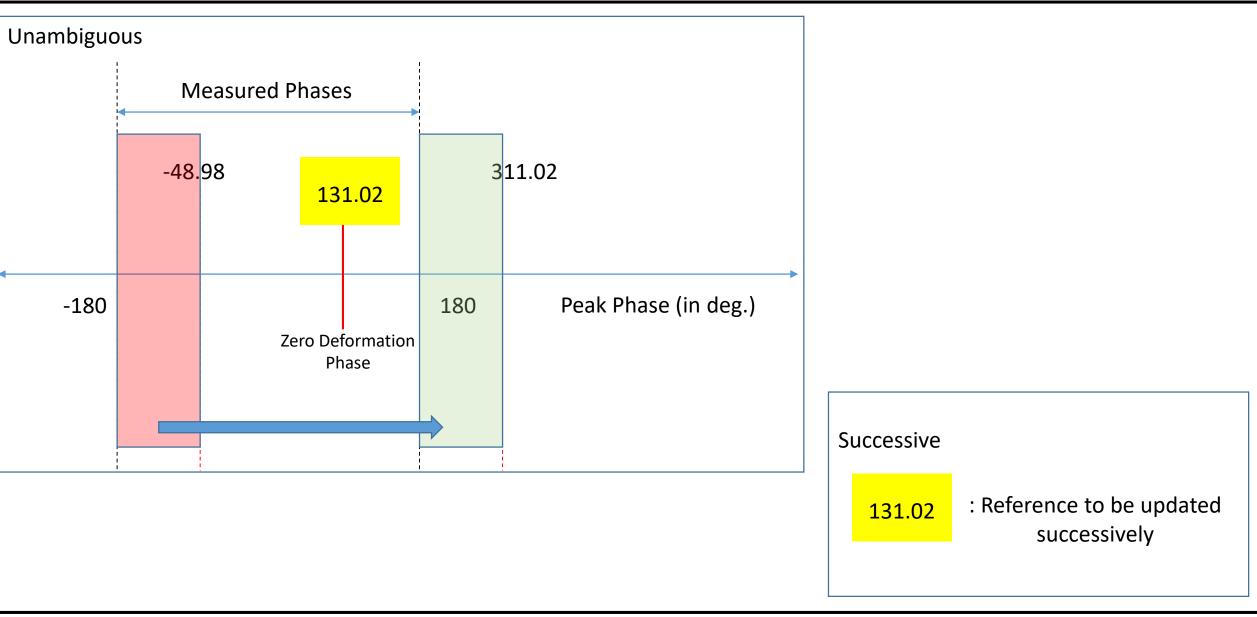
✓ In general multi-target case, it is compressed in azimuth direction to resolve targets and obtain their respective phases.



Scan No	Delta Deformation (mm)	Cumulative Deformation (mm)	Peak Phase		After Correction (fixed reference)	Change in Phase w.r.t first	Estimated Cumulative Deformation
0		0	131.02		131.02		
1	1.50	1.50	145.35		145.35	14.33	1.11
2	1.50	3.00	166.28		166.28	35.25	2.72
3	1.50	4.50	-176.47		183.53	52.51	4.05
4	3.00	7.50	-133.14		226.86	95.84	7.39
5	6.00	13.50	-53.83		306.17	175.15	13.51
6	1.50	15.00	-38.19		-38.19	-169.21	-13.06
7	7.50	22.50	52.97		52.97	-78.05	-6.02
8	7.50	30.00	143.70		143.70	12.68	0.98
					•		•



Scan No	Delta Deformation (mm)	Cumulative Deformation (mm)	Peak Pha (deg.)	se	After Correction (fixed reference) (deg.)	Change in Phase w.r.t first (deg.)	Estimated Cumulative Deformation (mm)
0		0	131.02		131.02		
1	1.50	1.50	145.35		145.35	14.33	1.11
2	1.50	3.00	166.28		166.28	35.25	2.72
3	1.50	4.50	-176.47	,	183.53	52.51	4.05
4	3.00	7.50	-133.14		226.86	95.84	7.39
5	6.00	13.50	-53.83		306.17	175.15	13.51
6	1.50	15.00	-38.19		-38.19	-169.21	-13.06
7	7.50	22.50	52.97		52.97	-78.05	-6.02
8	7.50	30.00	143.70		143.70	12.68	0.98
At 5.4GHz, λ/4 is 13.9mm							



 $\checkmark\,$ POC was carried out for C and S bands.

Scan No	Delta Deformation (mm)	Cumulative Deformation (mm)	Peak Phase Azimuth (deg.)	After Correction (successive reference) (deg.)	_	Cumulative Change in Phase (deg.)	Estimated Cumulative Deformation (mm)
0		0	131.02				
1	1.50	1.50	145.35	145.35	14.33	14.33	1.10
2	1.50	3.00	166.28	166.28	20.93	35.25	2.72
3	1.50	4.50	-176.47	183.53	17.26	52.51	4.04
4	3.00	7.50	-133.14	-133.14	43.32	95.84	7.39
5	6.00	13.50	-53.83	-53.83	79.31	175.15	13.51
6	1.50	15.00	-38.19	-38.19	15.64	190.79	14.71
7	7.50	22.50	52.97	52.97	91.15	281.95	21.74
8	7.50	30.00	143.70	143.70	90.73	372.68	28.74

Thus, successive deformations limited to $\lambda/4$ can be accurately estimated through successive referencing.

REFERENCES:

- Chan, Yee-Kit, et al. "A Ground-Based Interferometric Synthetic Aperture Radar Design and Experimental Study for Surface Deformation Monitoring." IEEE Aerospace and Electronic Systems Magazine 36.10 (2021): 4-15.
- Pieraccini, Massimiliano, and Lapo Miccinesi. "Ground-based radar interferometry: A bibliographic review." Remote Sensing 11.9 (2019): 1029.
- Monserrat, O., M. Crosetto, and G. Luzi. "A review of ground-based SAR interferometry for deformation measurement." ISPRS Journal of Photogrammetry and Remote Sensing 93 (2014): 40-48.
- Noferini, Linhsia, et al. "DEM by ground-based SAR interferometry." IEEE Geoscience and Remote Sensing Letters 4.4 (2007): 659-663.
- D. Tarchi, H. Rudolf, M. Pieraccini, and C. Atzeni, "Remote monitoring of buildings using a ground-based SAR: Application to cultural heritage survey," Int. J. Remote Sens., vol. 21, no. 18, pp. 3545–3551, 2000.
- R. Balmer and P. Hartl, "Synthetic aperture radar interferometry," Inverse Problems, vol. 14, pp. 1–54, 1998.