

Geometry- and Wavelength-Agnostic Highly efficient Forward and reverse SAR processor

(GAFA - Geometry- and Frequency-Agnostic)

<u>Björn Rommen (ESA/ESTEC)</u>, Yngvar Larsen (NORCE), Temesgen Gebrie Yitayew (NORCE), Tom Grydeland (NORCE), Andrea Recchia (Aresys)





#### GAFA development background and rationale



Within earlier ESA activities, forward and reverse kernels have been developed, e.g.

- During Sentinel-1A development
- > During SAOCOM-CS (ESA companion satellite for SAOCOM) development (discontinued in 2017)

#### But: no common and open architecture existed

Rationale: To develop mission-agnostic SAR processing kernels configurable for forward and reverse operations:

- Focusing kernels of interest as (prototype) L1 processor for various use, e.g. integration in ground segment or application specific processing chains and for integration in end-to-end SAR performance simulator frameworks
- Reverse kernels of interest in end-to-end SAR performance simulator frameworks and large-scale raw/Level-0 dataset generation for ground segment testing

#### Implemented/considered scenarios:

- 1) Monostatic (classic): Sentinel-1 (C-band);
- 2) Monostatic (HRWS): Sentinel-1NG (C-band) and ROSE-L (L-band);
- 3) Multistatic configurations: Harmony (C-band) + SAOCOM-CS (L-band);
- 4) GEO-SAR platforms (C-band, i.e. Hydroterra)





#### GAFA SAR: overview/summary





#### Introduction: GAFA SAR processor



#### A unifying framework based on agnostic frequency domain kernel

|      | RC                    |                       |      |
|------|-----------------------|-----------------------|------|
|      |                       |                       |      |
|      | Preprocessing         |                       |      |
| FFT  | Spectrum<br>mosaicing | NUFFT                 |      |
|      | Azimuth processing    |                       |      |
|      | w-k                   |                       | TDBP |
|      |                       |                       |      |
|      |                       |                       |      |
|      |                       |                       |      |
|      | Post processing       |                       |      |
| IFFT |                       | Spectrum<br>mosaicing |      |
|      |                       |                       | <br> |
|      |                       | SLC                   |      |

- A mode dependent preprocessing step:
  - Uniform sampling of range-Doppler domain
- An agnostic focusing kernel
- A mode dependent post processing step
- One notable exception: time domain focusing (TDBP)
  - GEOSAR
  - Independent implementation for validation

CEOS SAR Cal & Val Workshop 2024, Space Applications Centre, Ahmedabad, India

#### The agnostic frequency domain kernel



Some distinguishing features that made it possible for supporting a wide range of geometries including high-squint and bistatic

- Range migration based on high order polynomial 1. around specified doppler (zero or beam center doppler), instead of the commonly used hyperbolic approximation. Numerical focusing kernel based on series reversion.
- 2. Focusing grid is a generalized range-doppler coordinate system





#### The agnostic frequency domain kernel



# Some distinguishing features that made it possible for supporting a wide range of geometries including high-squint and bistatic

- 1. Range migration based on polynomial around specified doppler centroid (zero or beam center doppler), instead of the commonly used hyperbolic approximation. Numerical focusing kernel based on series reversion.
- 2. Focusing grid is a generalized range-doppler coordinate system
  - Azimuth (slow time)
  - Range (fast time)
  - Free choice of Doppler:
    - o Zero Doppler
    - o Beam center





### GAFA supports end-to-end radiometric calibration



- Starting point: radar equation
- Requires sensor specific annotations of raw data
  - Example: Sentinel-1
  - Implementation closely follows the calibration steps from Sentinel-1
    SAR Instrument Calibration and Characterisation procedures



#### Components in GAFA



# GAFA SAR: The reverse processor

- Simulation of SAR raw data based on reverse kernel
- A generic building block for E2E simulators
- Required configuration
  - Input from a scene generator (randomized phase to simulate fully developed speckle, unless scene generator already generates phase)
  - Mission parameters, including
    - Orbit / attitude
    - SAR mode parameters
      - SWST/SWL
      - Pulse parameters
      - Antenna patterns
      - Imaging mode
      - Mode specific parameters, e.g.
        - Antenna sweep rate (TOPS/spot)
        - Burst duration (scanSAR/TOPS)
        - Phase center layout (MAPS)

Modeled complex backscatter GEO SAR LEO SAR • Stripmap ScanSAR Staggered SAR TOPS SPOT Multichannel SAR Spectrum Preprocessing FFT mosaicing **Azimuth defocusing** Time domain simulation Inverse w-k TOPS SPOT HRWS Stripmap Multichannel SAR ScanSAR Staggered SAR Post processing Spectrum INUFFT mosaicing IFFT RC



#### GAFA SAR: The reverse processor – scene generation



- C-band S1 Global Backscatter Model<sup>[1]</sup>
- https://researchdata.tuwien.ac.at/doi/10.48436/94y79-r2d09
- 10m posting
- σ<sup>0</sup> linear model as function of incidence
   → 2 parameters per pixel, i.e. slope and intersect





**[1]** Bauer-Marschallinger, B., Cao, S., Navacchi, C. et al. The normalised Sentinel-1 Global Backscatter Model, mapping Earth's land surface with C-band microwaves. Sci Data **8**, 277 (2021). <u>https://doi.org/10.1038/s41597-021-01059-7</u>

#### GAFA SAR: The reverse processor – scene generation



#### L-band – PALSAR backscatter mosaic

- <a href="https://www.eorc.jaxa.jp/ALOS/en/dataset/fnf\_e.htm">https://www.eorc.jaxa.jp/ALOS/en/dataset/fnf\_e.htm</a>
- 25m posting
- Terrain corrected ("flattened")  $\gamma$ 0
- Gap filled using low-resolution scanSAR data



# 2019 PALSAR-2 25m Global Mosaic





# **Supports / Examples/ Use-cases**

Sentinel-1 Harmony GEO-SAR



### Support for Stripmap – Monostatic





- Preprocessing:
  - None (FFT does the job)
- Focusing:
  - Support for High-squint
- Post processing:
  - None (IFFT)

# Support for Stripmap – Monostatic



#### Support for TOPS/spotlight - Monostatic





#### Preprocessing:

• Spectral mosaicking

#### Focusing:

- Common kernel
- Post processing:
  - Spectral mosaicking
- Note:
  - Spotlight and inverse TOPS can be focused with same processing flow
  - ScanSAR can be focused with no postprocessing and same postprocessing

### Support for TOPS – Monostatic



- Example:
  - Sentinel-1, IW mode
  - rainforest (GAFA vs S1 IPF)
  - IW1, HH

| Timestamp    | Mean<br>difference<br>[dB] | Std [dB] |
|--------------|----------------------------|----------|
| 13:25.894345 | 0.151                      | 0.213    |
| 13:26.773464 | 0.118                      | 0.176    |





### Support for TOPS – Monostatic

**Issue**: Small, swath dependent bias when compared to ESA IPF

- Known effect likely to be due to imperfect antenna model
- IPF corrects this using swath dependent "processing gain" factors, GAFA currently does not



#### Support for TOPS – Monostatic



Swath dependent bias when compared to ESA IPF Jumps observed between swaths

[db]

gma0, EW1-IPF gma0, EW2-IPF gma0, EW3-IPF gma0, EW4-IPF gma0, EW5-IPF gma0, EW5-IPF





### Support for Bistatic – Future missions





Bistatic/Multistatic handled same way as high-squint monostatic, but with adapted geometry calculations – due to separate Tx/Rx parameters

- Preprocessing:
  - None (FFT does the job)
- Focusing:
  - Support for High-squint
- Post processing:
  - None (IFFT)

### Support for Bistatic – Future missions

- > Validation of the processor with flat scene simulations
  - Focused and radiometrically corrected
- Also validated using point target responses



Harmony – A: WV

### Support for Bistatic – Future missions



#### Validation of the processor with sea-state simulations

#### Bistatic-TOPS for Harmony





#### Support for GEO-SAR – Future missions



|      | RC                                     |         |      |
|------|----------------------------------------|---------|------|
| FFT  | Preprocessing<br>Spectrum<br>mosaicing | NUFFT   |      |
|      | Azimuth processing                     |         | TDBP |
|      |                                        |         |      |
| IFFT | Post processing                        | pectrum |      |
|      |                                        | SLC     |      |

#### Time domain processing (TDBP)

### Support for GEO-SAR – Future missions



- GEO-SAR concept introduced since eighties
- Technological and processing constraints prevented the implementation so far
- Hydroterra mission selected as one of the three EE10 candidates
- Hydroterra+ (evolved concept) selected as EE12 candidate
- Frequency domain processing approach limited by:
  - Non-straight orbit
  - Limited azimuth invariance
  - Large azimuth blocks size







| System           | Geostationary<br>SAR | Geosynchronous<br>SAR | LEOSAR<br>[Sentinel-1] |
|------------------|----------------------|-----------------------|------------------------|
| Antenna size     | 3-6 m                | 15-30 m               | 12 m                   |
| Average Tx Power | 400 W                | 3000 W                | 250 W                  |
| PRF              | 50 Hz                | 200 Hz                | 1700 Hz                |
| Max velocity     | 5 m/s                | 2600 m/s              | 7500 m/s               |
| Integration time | 20 mins 8 hrs.       | < 2 mins.             | < 1 s                  |

#### Support for GEO-SAR – Future missions



#### **Example: Validation of TDBP in GAFA using GeoSAR simulations**







CEOS SAR Cal & Val Workshop 2024, Space Applications Centre, Ahmedabad, India

05:47:00

(P1)

# Summary



- Main scenarios have been covered and demonstrated during GAFA development:
  - LEO Monostatic, multistatic, L- and C- band + GEO-SAR
  - HRWS capability (ROSE-L) currently being verified
- A versatile kernel implemented in a generic way: heavy lifting has been taken care of
  - Typically, only minor pre- and post-processing steps are needed.
- Adaptation for any current or future SAR mission with minor re-configuration
- GAFA currently used for:
  - Harmony end-to-end performance activities
  - Independent processor verification S-1C IOC
    - Including radiometric calibration
- Standardisation of data model for range/azimuth SAR data (L0 and L1)???





HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, IN STANT MESSAGING, ETC.)