

### **Ground-Based Synthetic Aperture Radar Calibration and** Validation for Land Surface Deformation

Arunkumar Heddallikar<sup>1,2</sup>, Raymond Pinto<sup>1</sup>, Y. S. Rao<sup>2</sup>, Avik Bhattacharya<sup>2</sup>, Tarique Sajjad<sup>3</sup>

#### Presenter: Y. S. Rao

#### **Centre of Studies in Resources Engg.**, IIT Bombay

<sup>1</sup> Society for Applied Microwave Electronic Engineering and Research, MeitY, GoI, Mumbai, India

<sup>2</sup> Centre of Studies in Resources Engineering, Indian Institute of Technology Bombay, Mumbai, India.

<sup>3</sup> Central Mine Planning & Design Institute Limited, Ranchi, India.



### 

## Introduction

- Continuous slope monitoring is essential for the safety of mine workers and equipment
- Disadvantage with satellite SAR missions is longer time gap in repeat acquisition
- Ground-based SAR is an option for continuous monitoring of slopes

### **Monitoring Requirements**

**Maximum Unambiguous Change of Distance** 

$$\Delta r_{max} = \pm \frac{\lambda}{4} = 4.3 \ mm$$
 Ku-band  
 $|V_{max}| = \frac{\lambda}{4\Delta t}$ 

At 10 minutes sampling interval, the maximum unambiguous velocity is 0.6 m/day for Ku-band and 10 m/day for L-band

| Velocity per day<br>mm/d | Class | Ku-band $\lambda$ =17 mm | C-band<br>λ= 56 mm | L-band<br>λ= 235 mm |
|--------------------------|-------|--------------------------|--------------------|---------------------|
| 2000                     | 4     | 3 min                    | 2 min              | 8 min               |
| 80                       | 3     | 1.2 h                    | 4 h                | 18 h                |
| 0.6                      | 2     | 7 d                      | 23 d               | 98 d                |



S Rödelsperger, Real-time Processing of Ground Based Synthetic Aperture Radar (GB-SAR) Measurements, Ph.D. thesis, Tech. Uni. Darmstadt, 2011. CEOS SAR Cal & Val Workshop 2024, Space Applications Centre, Ahmedabad, India



## **Design and Development**

Radar System

**Control Panel** 

- Work Station

**Technique :** FMCW (Continuous, not Stepped type) Frequency: 17.3 GHz (1.73 cm, Ku-band), Polarization VV Bandwidth : 250 MHz, Resolution = 0.60 m Rail length: 2 m Synthetic Aperture Length: 1.45 m Azimuth Resolution : 5.98 mrad (6 m at 1 km distance Radiated Power: 0.50 W (27dBm) Antenna : Horn type Antenna Beamwidth (E x H) :  $10^{\circ} \times 30^{\circ}$ ) Scan Time: 7 sec with velocity 0.2 m/s Maximum Distance: 1.5 km





### Installation of GB-SAR with different Units





### **Experiments for Calibration and Validation**

Test Site: Dudhichua Coal Mines, Singrauli District of Madhya Pradesh (M.P), India



90% medium and coarse-grained sand stone Total height 200 m Big stones of varying sizes raiso apresent 4, Space Applications Centre, Ahmedabad, India



Benches are typically 30 m in height and 35 m in width. Total height 200 m with a slope of 30<sup>0.</sup>



### **GB-SAR** Power Image



Photograph overburden dump

#### **Range-Doppler algorithm**





## **InSAR Mode for DEM Generation**



Radar is moved by 15 cm vertically

#### Fringes due to topograpy





Baseline experiment (15 cm wooden block)



## **CR Installation on the Mine Dump**





CR with 1 meter size and screw arrangement

#### Range Spectra of point target





#### **CR placement at different Locations**





#### Corner reflector (CR) installed at the overburden dump at different locations



## **Controlled Movement of CR**





CR is moved by 2 mm (<  $\lambda/4$ ) for every new acquisition with the help a screw and two wooden planks.







\hmedab

## **Time Series Plot of CR Movement**







Displacement of CR over 40 min.

Total displacement 12 x 2 mm = 24 mm

**RMSE = 0.5 mm** 



### **CR Impulse Response in Range and Azimuth**



Range Impulse Response (RIR)

**Azimuth Impulse Response (AIR)** 

| Range          | Azimuth        | 3 dB Width     | System Specification | Difference (m)  |
|----------------|----------------|----------------|----------------------|-----------------|
| PSLR/ISLR (dB) | PSLR/ISLR (dB) | Range m /      | Range m/Azimuth      | (Range          |
|                |                | Azimuth (mrad) | (mrad)               | m/Azimuth mrad) |
| -33 / -26      | -27 / -17      | 0.79 / 6.57    | 0.60 / 5.98          | 0.19 / 0.59     |
|                |                |                |                      |                 |



### SNR and NESZ





| Target type                | SNR (dB) |
|----------------------------|----------|
| Point Target (C R)         | 67       |
| Soil or Rock               | 15       |
| Vegetation (on bench no 4) | 15       |
| Road (between bench)       | 0        |

$$NE\sigma^0 = \left(\frac{4\pi R_0}{\lambda}\right)^3 \frac{Loss \cdot kT2v}{P_{av}G^2r_d}$$

Noise Equivalent Sigma Zero (NESZ) = - 67.80 dB





## **Geocoding and Overlay**

#### Laser DEM with Terrestrial Laser Scan









# Conclusion



- Strong return from soil/rock and CR is observed
- Many PS points are observed with 0.9 coherence up to a few hours.
- With long time series data, the loss of coherence is noticed
- CR movement is estimated with RMSE of 5 mm
- System is not yet fully operational



### **IBIS-M Radar installed by Coal India at NCL**





Asansol, West Bengal, NCL