

ISRO's SAR ship detection products for Maritime Domain Awareness

Presented By:

Wasim Akram

wasimakram@sac.isro.gov.in

Space Applications Centre (SAC) Indian Space Research Organization (ISRO)

Co-Authors: Jalpa Modi, Devang Mankad, V. M. Ramanujam

Met Ocean Applications of Remote Sensing

Maritime Domain Awareness(MDA) & Monitoring Systems

- VMS: Vessel Monitoring System
- LRIT: Long Range Identification & Tracking of Ships

	VMS	LRIT	AIS
•	a satellite-based fishing vessel monitoring system that provides ship information such as location, course and speed to fisheries authorities and at regular intervals. Generally transmit data at least every 60 minutes depending on law regulation specifications.	 an automated and satellite based vessel tracking system designed to collect and diffuse vessel position information received from vessels. use of LRIT systems is mandatory for vessels on international voyages including passenger ships carrying more than 12 passengers, high speed ships, offshore drilling and cargo ships over 300 tonnes. designed to ensure that ships provide daily 	 a radio navigation equipment that emits VHF for a vessel that has been required by the International Maritime Organization (IMO) for the Safety of Life at Sea (SOLAS) & contains vessel information and vessel position. requires operating AIS transmitters on all international cargo vessels of more than 300 tons displacement, all cargo vessels of more than 500 tons displacement, and all

position reports, at a

basic frequency of once

every 6 hours.

passenger vessels.

frequency of data

transmit is 3sec-3 mins.

Quick workflow of the processing chain of Level-3B Data

Quick workflow of the processing chain of Level-3C Data

RISAT-2B, EOS04/09 & NISAR Specifications

2025 (NISAR+EOS09)

	RISAT-2B-R1/R2 –	EOS	504/09 (RISAT-1A/1B)	NISAR SPECIFICATIONS				
Maritin	ne Mode SPECIFICATIONS		SPECIFICATIONS	Parameters	Specific	Specifications		
Parameters Specifications		Parameters	Specifications	Band	S-band	L-band		
Band	X-band	Band	C-band	Orbit	747 km with 982 inclination	n (polar sun-synchronous)		
Orbit	574 km with 98 inclination (polar sun-	Orbit	524 km with 98 inclination (polar sun-	Repeat Cycle	12 d	ays		
	synchronous)		synchronous)	Time of Nodal	6 AM /	6 PM		
Frequency	9.6 GHz	Repeat Cycle	17 days for EOS04 / ~9 days combining	Crossing				
Wavelength	3.125 cm		both EOS04/09.	Frequency	3.2 GHz 🛛 37.5 MHz	1.257 GHz 🛛 40 MHz		
PRF	2000-2500 Hz	Time of Nodal	6 am/6 pm	Wavelength	9 cm	24 cm		
Available	VV	Crossing		Available	Single Pol (SP), Dual Pol (DI	P), Quasi-Quad Pol (QQP),		
Polarization		Frequency	5.4 GHz	Polarimetric	hybrid Circular Pol (CP) in S	-band only, and Quad Pol		
Swath Width	140-250 Km	Wavelength	5.5 cm	Modes	(QP) in L-b	and only		
Crotial	$12 \operatorname{Fm}(A_{7}), 1 \operatorname{Fm}(Cleast D_{7})$	PRF	2800-3700 Hz	Range	10 MHz, 25 MHz, 37.5	5 MHz, 20 MHz, 40 MHz,		
Spacial	15.511 (AZ), 1.511 (Slatt-Ra)	Available	Single Pol (SP), Dual Pol (DP), Circular Pol	Bandwidths	MHz, 75 MHz	80 MHz		
		Polarization	(CP) , Full Pol (FP)	Options				
Range	550 - 600	Swath Width	10-223 Km	Swath Width	> 240 Km (except for QQP Mode)	> 240 Km (except for 80 MHz BW)		
Noise Equivalent	-10 dB	Spatial Resolution	1m-50m	Spatial Resolution	6.5m (Az): 2m-15m (Slant-	7m (Az): 2m-30m (Slant-		
		Incidence Angle	11? - 55?		Ra)	Ra)		
Doppler	Aliased to get large Swath	Range		Incidence Angle	33?– 47?	33? – 47?		
Bandwidth		Noise Equivalent	-17 dB	Range				
Sampling				Noise Equivalent	Better than -25 dB (for red	quired full-swath modes)		
		Doppler	No aliasing					
		Bandwidth		Pointing	Left (South) pointing		
		Sampling		Pointing Control	< 273 arc	seconds		
		Systematic	6 am pass in MRS mode	Orbit Control	< 500 n	neters		
		Coverage of		Data and Product	Free & ope	en access		
		Indian Landmass		Access				

CEOS SAR Cal & Val Workshop 2024, Space Applications Centre, Ahmedabad, India

2022

2020

EOS04/09 & NISAR Coverage for Ocean Applications

Coastal Scenes

Oceanic Scenes

Basic Concept of Ship Detection in SAR Images

Algorithm flowchart for Level-3B ship detection data product

> $m_c \& m_t$ represents background and test window mean > Detection threshold, $t = \alpha * m_c$

 $\gg \alpha = N * \left(P_{FA}^{-\frac{1}{N}} - 1\right)$, $P_{FA} = Probability$ of false alarm, N =Number of cells in background window

- $> m_t > m_t > m_t > m_t$
- CA-CFAR (Cell Averaging-Constant False Alarm Rate) is a statistical based approach for detection of ship pixels in SAR images.
- Variants of CFAR are possible based on different treatment given to background pixels. In case, of CA-CFAR (most widely used operationally) variant, background pixels are averaged as shown in above equation.
- PUT defines minimum detectable ship size, Guard window define maximum expected ship size to be detected, & Background window define pixels used to estimate background (ocean clutter).
- All the parameters are to be fine tuned for a particular sensor. Typical values of parameters for EOS04 are: PUT=3, Guard Window=17, Background Window=25, PFA=1e-6.
- As PFA increases, detectability increases, but false alarm also increases, so PFA has to be adjusted according to the dataset.
- \succ alpha (α) is constant for the dataset, & threshold adapts to the background pixels.

Content of Ship Detected Data Product (Level-3B)

Example of Ship Detection in Coastal Scene – Case: 1

Example of Ship Detection in Coastal Scene – Case: 2

Example of Ship Detection in Deep Ocean – Case: 1

5.78N, 94.20E

Example of Ship Detection in Deep Ocean – Case: 2

Few more Coastal Cases

Number of ships (Observed)62Number of ships (Observed)72Number of ships (Observed)106			 			
	Number of ships (Observed)	62	Number of ships (Observed)	72	Number of ships (Observed)	106

CEOS SAR Cal & Val Workshop 2024, Space Applications Centre, Ahmedabad, India

Few more Ocean Cases

MASK_FLAG=NA StripStartTime=2210090528300008615424 StripEndTime=2210090532390549071616 GroundTrackVelocity=-9999.99 DEMSource_Grid=NA SOFTWARE_VERSION=1.0.03 NoDetectedShips=98 NoAssociatedShips=0 Bemarks=0k

MASK_FLAG=NA StripStartTime=2209272336090472758016 StripEndTime=2209272339090867176448 GroundTrackVelocity=-9999.99 DEMSource_Grid=NA SOFTWARE_VERSION=1.0.03 NoDetectedShips=0 NoAssociatedShips=0 Eemarks=UK

shipChips

BAND_META.txt

KML

Verification of KML loaded on Google Earth

Examples of detected ships derived using EOS04 Data

Need of AIS Data Filtering (Abnormalities in AIS)?

Count

Count

CEOS SAR Cal & Val Workshop 2024, Space Applications Centre, Ahmedabad, India

2

AIS messages being repeated multiple times?

designation, trackname, update time, latitude, longitude, course, speed DONG FANG HONG 3, MMSI-413332930, 2021-08-07 23:09:41, 15.5567, 115.142, 47, 11 DONG FANG HONG 3, MMSI-413332930, 2021-08-07 23:09:41, 15.5567, 115.142, 47, 11 DONG FANG HONG 3, MMSI-413332930, 2021-08-07 23:09:41, 15.5567, 115.142, 47, 11 DONG FANG HONG 3, MMSI-413332930, 2021-08-07 23:09:41, 15.5567, 115.142, 47, 11 GASLOG GEORGETOWN, MMSI-310800000, 2021-08-07 23:27:59, 15.9067, 115.802, 21, 15 GASLOG GEORGETOWN, MMSI-310800000, 2021-08-07 23:27:59, 15.9067, 115.802, 21, 15 GASLOG GEORGETOWN, MMSI-310800000, 2021-08-07 23:27:59, 15.9067, 115.802, 21, 15 GASLOG GEORGETOWN, MMSI-310800000, 2021-08-07 23:27:59, 15.9067, 115.802, 21, 15 GASLOG GEORGETOWN, MMSI-310800000, 2021-08-07 23:27:59, 15.9067, 115.802, 21, 15 GASLOG GEORGETOWN, MMSI-310800000, 2021-08-07 23:27:59, 15.9067, 115.802, 21, 15 TRANG AN 08, MMSI-457193000, 2021-08-07 23:28:03, 16.2733, 108.548, 156, 11 TRANG AN 08,MMSI-457193000,2021-08-07 23:28:03,16.2733,108.548,156,11 TRANG AN 08, MMSI-457193000, 2021-08-07 23:28:03, 16.2733, 108.548, 156, 11 TRANG AN 08, MMSI-457193000, 2021-08-07 23:28:03, 16.2733, 108.548, 156, 11 TRANG AN 08,MMSI-457193000,2021-08-07 23:28:03,16.2733,108.548,156,11 TRANG AN 08, MMSI-457193000, 2021-08-07 23:28:03, 16.2733, 108.548, 156, 11 TRANG AN 08, MMSI-457193000, 2021-08-07 23:28:03, 16.2733, 108.548, 156, 11 NAN HAI 220, MMSI-413022000, 2021-08-07 23:32:59, 20.8133, 115.717, 42, 0 NAN HAI 220, MMSI-413022000, 2021-08-07 23:32:59, 20.8133, 115.717, 42, 0 NAN HAI 220, MMSI-413022000, 2021-08-07 23:32:59, 20.8133, 115.717, 42, 0 NAN HAI 220, MMSI-413022000, 2021-08-07 23:32:59, 20.8133, 115.717, 42, 0 SBI TANGO, MMSI-538006140, 2021-08-07 23:39:00, 20.9533, 110.853, 327, 0 SBI TANGO, MMSI-538006140, 2021-08-07 23:39:00, 20.9533, 110.853, 327, 0 SBI TANGO, MMSI-538006140, 2021-08-07 23:39:00, 20.9533, 110.853, 327, 0 SBI TANGO, MMSI-538006140, 2021-08-07 23:39:00, 20.9533, 110.853, 327, 0 SBI TANGO, MMSI-538006140, 2021-08-07 23:39:00, 20.9533, 110.853, 327, 0 NAN HAI 220, MMSI-413022000, 2021-08-07 23:39:12, 20.8133, 115.717, 42, 0 NAN HAI 220, MMSI-413022000, 2021-08-07 23:39:12, 20.8133, 115.717, 42, 0 NAN HAI 220, MMSI-413022000, 2021-08-07 23:39:12, 20.8133, 115.717, 42, 0 NAN HAI 220, MMSI-413022000, 2021-08-07 23:39:12, 20.8133, 115.717, 42, 0 NAN HAI 220, MMSI-413022000, 2021-08-07 23:39:12, 20.8133, 115.717, 42, 0 GRAND PIONEER, MMSI-352935000, 2021-08-07 23:42:04, 19.3583, 119.187, 215, 14 GRAND PIONEER, MMSI-352935000, 2021-08-07 23:42:04, 19.3583, 119.187, 215, 14 GRAND PIONEER, MMSI-352935000, 2021-08-07 23:42:04, 19.3583, 119.187, 215, 14 GRAND PIONEER, MMSI-352935000, 2021-08-07 23:42:04, 19.3583, 119.187, 215, 14 GRAND PIONEER, MMSI-352935000, 2021-08-07 23:42:04, 19.3583, 119.187, 215, 14 GRAND PIONEER, MMSI-352935000, 2021-08-07 23:42:04, 19.3583, 119.187, 215, 14 PTI HUDSON, MMSI-477854700, 2021-08-07 23:50:46, 13.8117, 115.483, 225, 11 PTI HUDSON, MMSI-477854700, 2021-08-07 23:50:46, 13.8117, 115.483, 225, 11 PTI HUDSON, MMSI-477854700, 2021-08-07 23:50:46, 13.8117, 115.483, 225, 11 PTI HUDSON, MMSI-477854700, 2021-08-07 23:50:46, 13.8117, 115.483, 225, 11 PTI HUDSON, MMSI-477854700, 2021-08-07 23:50:46, 13.8117, 115.483, 225, 11 MAERSK HAVANA, MMSI-563069900, 2021-08-07 23:54:58, 15.245, 116.023, 41, 22 MAERSK HAVANA, MMSI-563069900, 2021-08-07 23:54:58, 15.245, 116.023, 41, 22 MAERSK HAVANA, MMSI-563069900, 2021-08-07 23:54:58, 15.245, 116.023, 41, 22 MAERSK HAVANA, MMSI-563069900, 2021-08-07 23:54:58, 15.245, 116.023, 41, 22 MAERSK HAVANA, MMSI-563069900, 2021-08-07 23:54:58, 15.245, 116.023, 41, 22 MAERSK HAVANA, MMSI-563069900, 2021-08-07 23:54:58, 15.245, 116.023, 41, 22 MAERSK HAVANA, MMSI-563069900, 2021-08-07 23:54:58, 15.245, 116.023, 41, 22 DIGNITY ACE, MMSI-311002900, 2021-08-07 23:55:00, 13.075, 113.382, 225, 17 DIGNITY ACE, MMSI-311002900, 2021-08-07 23:55:00, 13.075, 113.382, 225, 17 DIGNITY ACE, MMSI-311002900, 2021-08-07 23:55:00, 13.075, 113.382, 225, 17 DIGNITY ACE, MMSI-311002900, 2021-08-07 23:55:00, 13.075, 113.382, 225, 17 DIGNITY ACE, MMSI-311002900, 2021-08-07 23:55:00, 13.075, 113.382, 225, 17 DIGNITY ACE, MMSI-311002900, 2021-08-07 23:55:00, 13.075, 113.382, 225, 17 DIGNITY ACE, MMSI-311002900, 2021-08-07 23:55:00, 13.075, 113.382, 225, 17

_	designation tracknam DIGNITY ACE MMSI-311002		-										
	designation	trackname	I	updatetime		la	atitude	lon	gitude	cours	e	e speed 25 17 25 17 25 17 25 17 25 17	
1	DIGNITY ACE	MMSI-311002900		2021-08-07 2	3:55	00	13.075		113.382	2	25	17	
2	DIGNITY ACE	MMSI-311002900		2021-08-07 2	3:55	00	13.075		113.382	2	25	17	
3	DIGNITY ACE	MMSI-311002900		2021-08-07 2	3:55	00	13.075		113.382		25	17	
4	DIGNITY ACE	MMSI-311002900		2021-08-07 2	3:55	00	13.075		113.382	2	25	17	
5	DIGNITY ACE	MMSI-311002900		2021-08-07 2	00	13.075		113.382	2	25	17		
6	DIGNITY ACE	MMSI-311002900		2021-08-07 2	3:55	00	13.075		113.382	2	25	17	
7	DIGNITY ACE	MMSI-311002900		2021-08-07 2	3:55	00	13.075		113.382	2	25	17	
_			_										
12	GASLOG GEOR	MMSI-310800000		2021-08-07 2	3:27:	59	15.9067		115.802		21	15	
13	GASLOG GEOR	MMSI-310800000		2021-08-07 2	3:27:	59	15.9067		115.802		21	15	
14	GASLOG GEOR	MMSI-310800000		2021-08-07 2	3:27:	59	15.9067		115.802		21	15	
15	GASLOG GEOR	MMSI-310800000		2021-08-07 23:27:59		59	15.9067		115.802		21	15	
16	GASLOG GEOR	MMSI-310800000		2021-08-07 23:27:5		59	15.9067		115.802		21	15	
17	GASLOG GEOR	MMSI-310800000	0 2021-08-07 23:27:59 15.9067 115.802			21	15						
_			_		_								
50	TRANG AN 08		N	1MSI-457193000		2021-08-07 23:28:03			16.2733		L08.548		
51	TRANG AN 08		Ν	1MSI-457193000		2021-0	8-07 23:28	:03	16.	2733	1	L08.548	

Multiple messages corresponding to same MMSI at same time stamp was observed.

			-					
50	TRANG AN 08	MMSI-457193000		2021-08-07 23:28:03	16.2733	108.548	156	11
51	TRANG AN 08	MMSI-457193000		2021-08-07 23:28:03	16.2733	108.548	156	11
52	TRANG AN 08	MMSI-457193000		2021-08-07 23:28:03	16.2733	108.548	156	11
53	TRANG AN 08	MMSI-457193000		2021-08-07 23:28:03	16.2733	108.548	156	11
54	TRANG AN 08	MMSI-457193000		2021-08-07 23:28:03	16.2733	108.548	156	11
55	TRANG AN 08	MMSI-457193000		2021-08-07 23:28:03	16.2733	108.548	156	11
56	TRANG AN 08	MMSI-457193000		2021-08-07 23:28:03	16.2733	108.548	156	11

Experience in EOS01(RISAT-2B) Maritime Mode SAR Data & NOVASAR AIS Data

NOVASAR AIS DATA AFTER APPLYING FILTER | STRIP ID -18967

NOVASAR AIS DATA BEFORE APPLYING FILTER | STRIP ID -18967

Douglas Peucker Algorithm for Trajectory Compression

- Douglas–Peucker (DP) is a cartographic/line generalization/waypoint simplification algorithm also known as polynomial approximation algorithm.
- **□** It basically reduces the number of points in a curve/line without losing the shape of the curve/line, based on some tolerance parameter 'epsilon' (ε).
- The algorithm starts by identifying the start and end points of the polyline which are called as the anchor point and the floating point, respectively. It works iteratively.
- \Box It first draws a line joining the first and the last point of the curve, it then checks which point in between is the farthest away from the line using "perpendicular distance" to calculate the distance from the point to the line. If the point is closer than the threshold (ε), then the point is removed, if not then the curve is split into two parts:
 - \Box From the 1st point up to the outlier, including the outlier.
 - □ The outlier and the remaining points.
- □ It has extensive applications in time series data analysis where in data is smoothened out without losing much information.

CEOS SAR Cal & Val Workshop 2024, Space Applications Centre, Ahmedabad, India

Application of DP Algorithm on MMSI: 419065000 SHIP-TYPE: Towing Vessel

Example of EOS-01/EOS04 SAR SHIP-AIS Association

AIS Associated Ship Chip samples with their dimensions – EOS01(RISAT-2B)

RB1_18967v_W_s4S005

RB2_11527v_W_s1S006

RB1_19175v_W_s4S005

RB1_19175v_W_s4S003

GUI Framework for SAR Ship Detection/AIS Analytics

GUI Framework for SAR Ship Detection/AIS Analytics

Example of AIS Trajectory Prediction

MMSI: 249605000

Prediction for next 2 hours

Prediction for next 4 hours

Thank You

For any queries, please contact: Wasim (wasimakram@sac.isro.gov.in)

Type of False Alarm – Case: 1 – Improper Island Masking

Land-masked sub image

Type of False Alarm – Case: 2 – Improper Land Masking/Rain Seasonal Impact

23801152051

Land-masked sub image

Type of False Alarm – Case: 3 – Side Lobes

Type of False Alarm – Case: 4 – Range Ambiguity

CEOS SAR Cal & Val Workshop 2024, Space Applications Centre, Ahmedabad, India